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Noncommutative Version of Nikodym Boundedness 
Theorem for Uniform Space-Valued Functions 
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A Nikodym boundedness-type theorem with necessary and sufficient conditions 
for a family of functions defined on a tr(~)-difference-poset and with values in a 
uniform space is proved. For a special important case--orthomodular lattice--the 
conditions are relaxed. 

1. I N T R O D U C T I O N  

The Nikodym boundedness theorem is one of the most important theo- 
rems in commutative measure theory. It says that a family At of  countable 
additive signed measures m, defined on a ~r-algebra E, which is pointwise 
bounded, i.e., for each E ~ E there exists ME > 0 such that I m(E) I < Me 

(m e At), is uniformly bounded, i.e., there exists M > 0 such that 

[m(E)] < M (m ~ At, E e E) 

(Dunford and Swartz, 1958). 
The noncommutative measure-theoretic version of this theorem consists 

in the generalization of the domain of the considered measures to a quantum 
logic, so that the measures are now states (Dvure~enskij, 1993; Cook, 1978). 
Usually in the quantum logic approach to quantum mechanics the states are 
represented by probability measures on orthomodular lattices (Kalmbach, 
1983; Ptak and Pulmannovfi, 1991; Dvure~enskij, 1993). But in this situation, 
in contrast to the Boolean case, it can happen that there does not exist any 
nontrivial probability, even a group-valued measure (Navara, n.d.). 
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Very recently, motivated by investigations in the theory of fuzzy sets, 
Chovanec and Kopka have introduced the new, very useful notion of  
difference-poset (D-poset) (K6pka, 1992; K6pka and Chovanec, 1994). This 
structure is a generalization of quantum logic (Kalmbach, 1983; Ptak and 
Pulmannova, 1991), MV-algebras (Mundici, 1986), orthoalgebras (Foulis et 
al., 1992), the set of all effects (Dvure~enskij, n.d.), and the collection of 
fuzzy sets (K6pka, 1992). 

The Nikodym boundedness theorem was generalized not only with 
respect to the domain of the measure, but also with respect to the range and 
the properties of the considered measures. So there are vector-, group-, 
and even semigroup-valued measure versions of the Nikodym boundedness 
theorem. On the other hand, interest in nonadditive set functions (submeas- 
ures, k-triangular set functions, decomposable measures, null-additive set 
functions) has grown in view of many different applications. There are recent 
investigations of set functions with values in sets endowed only with some 
topological structures without any algebraic operations: metric space (Pap, 
1988), special topological spaces (Klimkin, 1989), and uniform spaces 
(Pap, 1991a,b). 

The classical proof of the Nikodym boundedness theorem (see, for 
example, Dunford and Swartz, 1958, pp. 156-160) works with the Bair 
category theorem using the transformation of the measure space into a com- 
plete metric space. A disadvantage of this approach is the need for the 
completeness of the considered metric space and also the distributivity in 
the domain, which are not usually satisfied for noncommutative versions of 
Nikodym boundedness theorems. A more convenient approach in this case 
is the so-called "sliding hump" technique, used by Lebesgue and Toeplitz. 
This method was recently unified and generalized in many papers with 
many applications in functional analysis and measure theory; see Pap (1982), 
Antosik and Swartz (1985), and Swartz (1992) and the survey article of de 
Lucia and Pap (n.d.). Applications of this method can be found in Cook 
(1978), Guarigilia (1990), and Pap (1986). 

In this paper we continue our investigations, which were started in de 
Lucia and Pap (1995), of functions defined on difference-posets and with 
the values in an arbitrary uniform space. 

2. D I F F E R E N C E - P O S E T S  

In this section we explain some notions and their properties which we 
need in the following section. 

We have by K6pka (1992), K6pka and Chovanec (1994), and Dvure6en- 
skij and Rie~an (1994), the definition of the basic structure. 
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Definition 1. A D-poset (difference poset) is a partially ordered set L 
with a partial ordering -<, maximal element 1, and a partial binary operation 
0 :  L x L ~ L, called difference, such that, for a, b ~ L, b O a is defined 
if and only if a - b, for which the following axioms hold for a, b, c E L: 

(DPI) 
(DP2) 
(DP3) 

b O a < _ b .  
b O (b O a) = a. 
a<-b < - c ~ c O b  < - c O a a n d ( c O a )  O ( c O b )  = b O a .  

and 

These axioms imply that there exists also a minimal element 0 (= 1 O 1). 
The following properties of the operation O have been proved in Kopka 
Chovanec (1994): 

(a) a O O = a .  
(b) a O a = O .  
(c) a < - b ~ b O a = O c : * b = a .  
(d) a < - b = * b O a = b c : * a = O .  
(e) a < - b < - c ~ b O a < - c O a a n d ( c O a )  O ( b O a ) = c O b .  
(f) b < - c , a < - c O b ~ b < - c O a ,  and(cOb)  O a = ( c O a ) O b .  
(g) a < - b < - c ~ a < - ( c O ( b O a ) ) O a = c O b .  

For an arbitrary but fixed element a ~ L we define 

a Z : : l O a  

We have: 

(i) a l •  = a. 

(ii) a - - - b ~ b  •  i .  

The elements a and b from L are orthogonal, denoted by a A_ b, iff a 
-<b l ( o r b - < a •  

We define a partial binary operation 0 :  L x L --~ L for orthogonal 
elements a and b such that 

b - - - a O b  and a = ( a O b )  O b  

This operation �9 is commutative and associative (Dvure6enskij and Rie- 
~an, 1994). 

The notion of D-poser covers many important examples. 

Example 1 (de Lucia and Dvure6enskij, 1993a; de Lucia and Morales, 
1992; de Lucia and Pap, 1995; Dvure6enskij and Pulmannova, 1994a,b; Ptak 
and Pulmannova, 1991). An orthomodular poset is a partially ordered set O 
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with an ordering --<, the minimal and maximal elements 0 and 1, respectively, 
and an orthocomplementation ': O --~ O such that: 

(OMO a" = a (a ~ 0) .  
(OM2) a v a' = 1 (a ~ 0) .  
(OM3) If a --< b, then b' --- a' .  
(OM4) I f a - - - b ' , t h e n a v b  E O. 
(OMs) I f a - - - b ,  thenb  = a v ( a v b ' ) ' .  

Taking for a --< b 

b O a : = ( a v b ' ) '  

we obtain that the orthomodular poset O is a D-poset. 

Example 2 (Chang, 1958; Mundici, 1986). An MV-algebra is a set M 
endowed with two binary operations �9 and q), a unary operation *, and two 
elements 0 and 1 such that, for all a, b, c E M: 

(MV1) a O b = b O a .  
(MV2) (a O b) O c = a O (b O c). 
(MV3) a O 0 = a .  
(MV4) a O  1 = 1. 
(MVs) (a*)* = a. 
(MV6) 0* = 1. 
(MV7) a O a *  = 1. 
(MVs) ( a * O b ) * O b  = ( a O b * ) * O a .  
(MV9) a ( D b  = ( a * O b * ) * .  

Taking 

and for a -< b 

a <-- bc :* (a  63 b*) O b  = b 

b O a : = ( a O b * ) *  

we obtain that the MV-algebra M is a D-poset. 

Example 3 (Foulis et aL, 1992; Dvure~enskij and Rie~an, 1994). An 
orthoalgebra is a set A with two particular elements 0, 1 and with a partial 
binary operation O: A X A ---) A such that for all a, b, c ~ A: 

(OAt) 
(OA2) 

(OA3) 

I f a O b  E A, then b O a ~ A a n d a O b  = b o a .  
I f b O c  ~ A a n d a  O ( b O c )  ~ A, t h e n a O b  ~ A and 
( a O b )  O c  ~ A, a n d a O ( b O c )  = ( a O b )  O c .  
For any a ~ A there is a unique b E A such that a �9 b is 
defined, and a �9 b = 1. 
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(OA4) If a �9 a is defined, then a = 0. 

We have a -- b iff there exists an element c e A such that a �9 c is 
defined in A and a O c = b. An element b is the orthocomplement of a 
(denoted by a • iff b is a (unique) element of A such that b G a is defined 
i n A a n d a O b  = 1. 

Taking for a --< b 

b o a : =  ( a O b •  • 

we obtain that the orthoalgebra A is a D-poset. We remark that each orthomod- 
ular poset (Example 1) is an orthoalgebra, but the opposite is not true [see 
example of R. Wright in the paper of  Foulis et al. (1992)]. 

Example 4 (K6pka and Chovanec, 1994; Dvure~enskij and Rie6an, 
1994). Let %(H) be the set of all Hermitian operators T on a Hilbert space 
H with O ----- T -< /, where O and I are the zero and identity operators, 
respectively, on H. The set %(H) is a D-poset, which is not an orthoalgebra. 

Example 5 (K6pka, 1992). Let 1~ be a nonempty set and ~ the family 
of all fuzzy sets on f l ,  i.e., ~ = [0, 1] a. We have for f, g ~ 

f - <  g ca  f(o~) --- g(to) (o~ E ~ )  

Let aO: [0, 1] --+ [0, ~) be an injective increasing continuous function such 
that O(0) = 0. Taking for f -  g 

(g Gf)(co) = OP-l(cI)(g(m)) - r (to e ~ )  

we obtain that ~ is a D-poset. 

3. O - O R T H O G O N A L I T Y  

L will always denote a D-poset. Let {al . . . . .  an} C L. We define 

a l O . . . O a n = O  for n = 0  

a~O. . .Oan=a . ,  for n =  1 

a l O . . . G a n = ( a ~ O . . . O a n _ O O a n  for n - > 3  

supposing that al �9 " "  O an-1 and al �9 " "  �9 an exist in L. We have, by 
Dvure6enskij and Rie~an (1994), the following definition. 

Definition 2. A finite subset al �9 - "  ~) a,, of  L is O-orthogonal if 
al �9 " "  G a, exists in L. 
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We say that a O-orthogonal subset {al . . . . .  an} of L has a O-sum, 
@']=l ai, defined by 

ai := al O . . .  O a, 
i=1 

We remark that the preceding O-sum is independent of any permutation 
of elements. 

Definition 3. A subset G of L is O-orthogonal if every finite subset F 
of G is O-orthogonal. 

We say that a @-orthogonal subset G = {ai: i c I} of L has a O-sum 
in L, O i d  ai, if in L there exists the join 

Any subset of a O-orthogonal set is again O-orthogonal. 

Definition 4. A D-poset L is a complete D-poset (~(O)-D-poset) if, for 
every O-orthogonal subset (every countable O-orthogonal subset) G of L, 
there exists the O-sum in L. 

Definition 5. A D-poset L is quasi<r-complete if for every O-orthogonal 
sequence {ai} in L there exists a subsequence {ai}i~M such that 0i~1 ai E 
L for each I C M. 

Remark 1. The notion of quasi<r-ring was introduced by Constantinescu 
(1981, 1984). 

We shall give now an example of a cr(O)-D-poset. 

Example 6 (de Lucia and Pap, 1995). Let S be any set of real numbers 
between 0 and 1 where S satisfies the following conditions: 

(i) 0 E Sand  1 E S. 
(ii) I fx ,  y ~ S, thenmin(1, x + y )  ~ S. 

(iii) I fx ,  y ~ S, thenmax(0, x + y -  1) ~ S. 
(iv) I f x  ~ S, then 1 - x  ~ S. 

The operations O, O, and * are defined as follows: 

x @ y := min(1, x + y) 

x ( 3 y : = m a x ( 0 ,  x + y -  1) 

X *  :---- 1 - -  X 
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The system (S, @, G, *, 0, 1) is an MV-algebra. If we take S = [0, 1], 
we obtain a cr-MV-algebra with respect to the operation G and in this way 
also a ~y(G)-D-poset, since for x ----- y we have that the operation G defined by 

x G y : = (x G y*)* 

gives a cr-D-poset with respect to the operation Gt~ defined by 

x G D y =  ( y * @ x ) *  

which coincides with the operation G, i.e., 

x Go y = (y* G x)* = ((x G (y*)*)*)* = x G y 

We remark that for S = {0, 1 } we trivially obtain also an cr(G)-D- 
poset. But if S = the set of all rational numbers between 0 and 1, then this 
is a MV-algebra, and so also a D-poset, which is not a cr(G)-MV-algebra 
and so also not a r 

4. N I K O D Y M  B O U N D E D N E S S  T H E O R E M  

Let Y be an uniform space with the uniformity OR. We have, by Hejcman 
(1959), the following statement. 

Definition 6. A subset B of Y is bounded (~ if for every U 
e OR there exist a finite set K C B and a natural number n such that 

B C Un[K] 

where U 1 = U, U n = U o U n-I (o is the composition of the relations), and 
U[K] is the set of all x ~ Y such that (x, y) ~ U for some y e K. 

A subset B of a metrizable uniform space (Y, ~ )  is oR-bounded if and 
only if it is d-bounded for every metric d generating the same uniformity OR. 
The following known characterization of oR-boundedness will be often used. 

Theorem 1. A set B C Y is oR-bounded if and only if it is d-bounded 
for every uniformly continuous pseudometric d defined on Y. 

We denote by ~ the family of all uniformly continuous pseudometrics 
defined on (Y, OR). 

Let L be a quasi-cr-D-poset. 

Definition 7. For d ~ ~ the d-semivariation of a function ~: L --> Y 
with respect to a point x0 ~ Y is 

~O(b) := sup{d(tx(c), x0): c -< b, c e L} (b E L) 
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We define for d E ~b and Xo E Y a function IX: L ~ Y 

~x~~ ix) := lim suptd(ix(a G b), Xo): Ii~~ < 1, b ~ L~ (a ~ L) 
n-->oo l n J 

Theorem 2. Let At be a family of xo-exhaustive functions IX: L ---) Y, 
i.e., lim d(m(a,), x) = 0 for each @-orthogonal sequence {an}, where L is 

a quasi-cr-D-poset and Y is a uniform space. Then the set 

{ix(a): IX ~ At, a E L} 

is ~t-bounded if and only if the following conditions hold: 
(i) For each d e ~ and each m ~ N there exists s(m) ~ N such that 

d(ix(a), Ix(b)) > s(m) 

implies either, for b --- a, 

or, for a -< b, 

d(Ix(a 0 b), Xo) > m 

d(ix(b 0 a), Xo) > m 

(ii) For each d ~ ~ the set 

{e~~ Ix): Ix ~ At} 

is bounded for each a e L. 
(iii) For each d ~ 

{d(ix(an), x0): IX ~ At, n ~ N} 

is bounded for every orthogonal sequence {a, } from L. 

Proof The necessary part of the proof is obvious. Suppose that (i)-(iii) 
hold, but the set 

{ix(a): IX ~ At, a ~ L} 

is not ~t-bounded. Then by Theorem 1 and (iii) there exist d from ~ and an 
orthogonal sequence {a.} from L such that 

d(Ix.(a.), Xo) > n (n ~ N)  

We take by (ii) 

ml := sup ~x~O(al, IX,) + 1 e N (1) 
n 

Then, there exists s(mO + 1 E N, by (i). We take nl > s(mO + 1. By Lemma 
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1 from de Lucia and Pap (1995) and (1) there exists a subsequence {a~} of 
the sequence a111+1, an2+2, . . .  such that 

d(Ixn,(ai O (~ < ml 

for arbitrary I C N. Now we take 

m 2 " =  sup a}~ I �9 a111, Ix11) + 1 e N 
tl 

by (ii) and we repeat the whole preceding procedure. 
Continuing this procedure, we obtain two sequences of natural numbers 

{ink} and {n~}, no = 1, such that for 

k - I  

a n  

we have 

and 

d(lxllk(allk), Xo) > nk > s(mk) + k (k ~ N) (2) 

[by (i)]. 
d Taking k > supj (/~11j(Gi=o a11i), Xo), we obtain, by (2), 

Hence by condition (i) 

d(I.zllk(i@=o a,,i O a.,,k), xo > mk ( k e N )  

Contradiction with (3). 

If L is an orthomodular lattice (Example 1), then we can relax the 
conditions in the previous theorem. 
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Theorem 3. Let L be a cr-orthomodular lattice. Let At be a family of 
functions IX: L ~ Y. Then the set 

{ix(a): IX ~ At, a ~ L} 

is ~-bounded  if and only if the following conditions hold: 
(i) For each ix ~ At and each m ~ N there exists s(m) E N such that 

for each a, b, E L 

d(ix(a), Ix(b)) > s(m) (d E ~ ,  IX E At) 

implies either 

o r  

~o((b v a ' ) ' )  > m 

~O((a v b ' ) ' )  > m 

(ii) For each d ~ ~ the set 

{ix(a.): Ix ~ At, n ~ N} 

is d-bounded for every orthogonal sequence {a. } from L. 

Proof The necessity of (i) and (ii) is obvious. Now, suppose that (i) 
and (ii) hold, but the set 

{ix(a): a ~ L, Ix ~ At} 

is not %t-bounded. Then for any Xo E Y there exist d E ~ ,  a sequence { Ix. } 
from At, and a sequence {an} of elements from L such that 

d(Ix.(a.), Xo) > n (n E N) (4) 

On the other hand, condition (ii) implies that there exists M > 0 such that 

d(ixn(al), x0) < m 

Hence by (4) 

d(ix.(al), Ix.(a.)) --> oz 

as n ---> oo. Then, for n ---> 0% by (i) either 

(a) sup{d(ix.(e), x0): c ~ L, e --- (al v a ' ) '}  --+ 

o r  

(b) sup{d(ix.(c), x0): c ~ L, c -< (a. v a[)'} ~ w 

Case (a). We shall choose a subsequence {ix.h } of the sequence {Ix.} 
and a sequence { e.} of orthogonal elements from L such that 
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d(IXnk(ek), XO) > k (k ~ N )  

Let ~ = tx~ and e~ = al. We choose n2 such that P~,2 = txiz, where i2, i3, 
� 9  is a sequence of  natural numbers,  elements ai2, az3 . . . .  f rom the sequence 
{an }, and elements a) from L such that a) <-- aij and 

d(p~ij((a , v (a ) ) ' ) ' ) ,  Xo) > j ,  j = 2, 3 . . . .  

[contradiction with (ii)]. We take e2 = (al x/ (a l ) ' )  '. Now we repeat the 
preceding procedure, taking the sequences { ~ij} and { (al v ( a ) ) ' ) '  }~o. Continu- 
ing this procedure,  we obtain the sequences { ~ }  and {en}, which give a 
contradiction with (ii). 

Case  (b). Let P~nm = P~1. We choose n2 such that P~n2 = ~'Li2, where we 
take a sequence i2, i3 . . . .  of  natural numbers,  a sequence of  elements 
ai2, ai3 . . . .  f rom the sequence {an}, and elements a) (j  = 2, 3 . . . .  ) f rom L 
such that a) >- ao and 

d(p.ij((a) v a'l)'), x0) > j ,  j = 2, 3 . . . .  

Let  bl = al and b2 = (a~ v a[) ' .  Now we shall repeat the procedure for the 
sequences ~i2, Ixi3 . . . .  and (a2 l v a~)', (a~ v a'l)', . . . .  The  sequence {b,} is 
decreasing, i.e., bn --> bn+l (n ~ N). The condition (i) implies the existence 
of  the subsequences {txnki} and {bkg} such that 

(O~,ki)~0((bkg V b~i_l)' ) > i (i E N)  

Since we have 

(bki v b'ki_ i)' = b'k /x bki-i 

the sequence { (bki/x b~i_ 1)'} is orthogonal.  Hence the preceding inequalities 
imply the existence of  an orthogonal sequence {ci} such that ci <-- (bki v 
b~i_l)' and 

d(l~,,ki(ci), Xo) > i (i E N )  

Contradiction with (ii). 
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